Nuprl Lemma : grp_id_wf2

[g:OGrp]. (e ∈ |g|+)


Proof




Definitions occuring in Statement :  hgrp_car: |g|+ ocgrp: OGrp grp_id: e uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hgrp_car: |g|+ ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon prop: subtype_rel: A ⊆B omon: OMon and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  grp_id_wf grp_leq_wf ocgrp_wf grp_leq_weakening_eq subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf inverse_wf grp_inv_wf omon_properties set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache sqequalRule axiomEquality equalityTransitivity equalitySymmetry applyEquality instantiate setEquality productEquality lambdaEquality functionEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_functionElimination independent_functionElimination cumulativity universeEquality independent_pairFormation addLevel levelHypothesis

Latex:
\mforall{}[g:OGrp].  (e  \mmember{}  |g|\msupplus{})



Date html generated: 2017_10_01-AM-08_15_24
Last ObjectModification: 2017_02_28-PM-02_00_27

Theory : groups_1


Home Index