Nuprl Lemma : hgrp_car_wf

[g:GrpSig]. (|g|+ ∈ Type)


Proof




Definitions occuring in Statement :  hgrp_car: |g|+ grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  hgrp_car: |g|+ uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  grp_car_wf grp_leq_wf grp_id_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:GrpSig].  (|g|\msupplus{}  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_14_00
Last ObjectModification: 2015_12_26-PM-11_41_16

Theory : groups_1


Home Index