Nuprl Lemma : hgrp_car_wf
∀[g:GrpSig]. (|g|+ ∈ Type)
Proof
Definitions occuring in Statement : 
hgrp_car: |g|+
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
hgrp_car: |g|+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
grp_leq_wf, 
grp_id_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:GrpSig].  (|g|\msupplus{}  \mmember{}  Type)
Date html generated:
2016_05_15-PM-00_14_00
Last ObjectModification:
2015_12_26-PM-11_41_16
Theory : groups_1
Home
Index