Nuprl Lemma : grp_op_wf2
∀[g:OGrp]. (* ∈ |g|+ ⟶ |g|+ ⟶ |g|+)
Proof
Definitions occuring in Statement : 
hgrp_car: |g|+, 
ocgrp: OGrp, 
grp_op: *, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
hgrp_car: |g|+, 
prop: ℙ, 
uimplies: b supposing a, 
infix_ap: x f y
Lemmas referenced : 
grp_op_wf, 
hgrp_car_wf, 
ocgrp_wf, 
hgrp_car_properties, 
grp_leq_wf, 
grp_id_wf, 
grp_op_polarity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_set_memberEquality, 
independent_isectElimination
Latex:
\mforall{}[g:OGrp].  (*  \mmember{}  |g|\msupplus{}  {}\mrightarrow{}  |g|\msupplus{}  {}\mrightarrow{}  |g|\msupplus{})
Date html generated:
2016_05_15-PM-00_14_07
Last ObjectModification:
2015_12_26-PM-11_41_09
Theory : groups_1
Home
Index