Nuprl Lemma : comp_id_mon_wf
∀[T:Type]. ((<o,Id> monoid on T) ∈ IMonoid)
Proof
Definitions occuring in Statement : 
comp_id_mon: (<o,Id> monoid on T)
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
comp_id_mon: (<o,Id> monoid on T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
and: P ∧ Q
, 
tidentity: Id{T}
Lemmas referenced : 
mk_imon, 
btrue_wf, 
compose_wf, 
identity_wf, 
comp_assoc, 
comp_id_r, 
comp_id_l
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[T:Type].  ((<o,Id>  monoid  on  T)  \mmember{}  IMonoid)
Date html generated:
2016_05_15-PM-00_17_15
Last ObjectModification:
2015_12_26-PM-11_39_00
Theory : groups_1
Home
Index