Nuprl Lemma : mon_when_of_id

[g:IMonoid]. ∀[b:𝔹].  ((when b. e) e ∈ |g|)


Proof




Definitions occuring in Statement :  mon_when: when b. p imon: IMonoid grp_id: e grp_car: |g| bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mon_when: when b. p bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  imon: IMonoid bfalse: ff
Lemmas referenced :  grp_id_wf bool_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule lemma_by_obid isectElimination setElimination rename hypothesisEquality hypothesis because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].    ((when  b.  e)  =  e)



Date html generated: 2016_05_15-PM-00_18_41
Last ObjectModification: 2015_12_26-PM-11_38_14

Theory : groups_1


Home Index