Nuprl Lemma : ocmon_anti_sym
∀[g:OCMon]. ∀[x,y:|g|].  (x = y ∈ |g|) supposing ((↑(y ≤b x)) and (↑(x ≤b y)))
Proof
Definitions occuring in Statement : 
ocmon: OCMon
, 
grp_le: ≤b
, 
grp_car: |g|
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
eqfun_p: IsEqFun(T;eq)
, 
monot: monot(T;x,y.R[x; y];f)
, 
cancel: Cancel(T;S;op)
, 
connex: Connex(T;x,y.R[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
Lemmas referenced : 
ocmon_properties, 
assert_wf, 
grp_le_wf, 
grp_car_wf, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
axiomEquality, 
applyEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OCMon].  \mforall{}[x,y:|g|].    (x  =  y)  supposing  ((\muparrow{}(y  \mleq{}\msubb{}  x))  and  (\muparrow{}(x  \mleq{}\msubb{}  y)))
Date html generated:
2016_05_15-PM-00_11_19
Last ObjectModification:
2015_12_26-PM-11_43_33
Theory : groups_1
Home
Index