Nuprl Lemma : ocmon_anti_sym

[g:OCMon]. ∀[x,y:|g|].  (x y ∈ |g|) supposing ((↑(y ≤b x)) and (↑(x ≤b y)))


Proof




Definitions occuring in Statement :  ocmon: OCMon grp_le: b grp_car: |g| assert: b uimplies: supposing a uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) uimplies: supposing a prop: infix_ap: y ocmon: OCMon abmonoid: AbMon mon: Mon
Lemmas referenced :  ocmon_properties assert_wf grp_le_wf grp_car_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality isectElimination axiomEquality applyEquality setElimination rename equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OCMon].  \mforall{}[x,y:|g|].    (x  =  y)  supposing  ((\muparrow{}(y  \mleq{}\msubb{}  x))  and  (\muparrow{}(x  \mleq{}\msubb{}  y)))



Date html generated: 2016_05_15-PM-00_11_19
Last ObjectModification: 2015_12_26-PM-11_43_33

Theory : groups_1


Home Index