Nuprl Lemma : ocmon_refl

[g:OCMon]. ∀[a:|g|].  (↑(a ≤b a))


Proof




Definitions occuring in Statement :  ocmon: OCMon grp_le: b grp_car: |g| assert: b uall: [x:A]. B[x] infix_ap: y
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) infix_ap: y ocmon: OCMon abmonoid: AbMon mon: Mon implies:  Q
Lemmas referenced :  ocmon_properties assert_witness grp_le_wf grp_car_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality isectElimination applyEquality setElimination rename independent_functionElimination

Latex:
\mforall{}[g:OCMon].  \mforall{}[a:|g|].    (\muparrow{}(a  \mleq{}\msubb{}  a))



Date html generated: 2016_05_15-PM-00_11_13
Last ObjectModification: 2015_12_26-PM-11_43_36

Theory : groups_1


Home Index