Step
*
1
1
1
of Lemma
quot_grp_inv_wf
1. g : IGroup
2. h : |g| ⟶ ℙ
3. h SubGrp of g
4. norm_subset_p(g;h)
5. v : |g|
6. v1 : |g|
7. v ≡ v1 (mod h in g)
⊢ (~ v) = (~ v1) ∈ |g//h|
BY
{ (EqTypeCD THEN Auto) }
1
.....aux.....
1. g : IGroup
2. h : |g| ⟶ ℙ
3. h SubGrp of g
4. norm_subset_p(g;h)
5. v : |g|
6. v1 : |g|
7. v ≡ v1 (mod h in g)
⊢ EquivRel(|g|;x,y.x ≡ y (mod h in g))
2
.....antecedent.....
1. g : IGroup
2. h : |g| ⟶ ℙ
3. h SubGrp of g
4. norm_subset_p(g;h)
5. v : |g|
6. v1 : |g|
7. v ≡ v1 (mod h in g)
⊢ ~ v ≡ ~ v1 (mod h in g)
Latex:
Latex:
1. g : IGroup
2. h : |g| {}\mrightarrow{} \mBbbP{}
3. h SubGrp of g
4. norm\_subset\_p(g;h)
5. v : |g|
6. v1 : |g|
7. v \mequiv{} v1 (mod h in g)
\mvdash{} (\msim{} v) = (\msim{} v1)
By
Latex:
(EqTypeCD THEN Auto)
Home
Index