Nuprl Lemma : princ_ideal_mem_cond

r:CRng. ∀u,v:|r|.  (v in ⇐⇒ (v)r u)


Proof




Definitions occuring in Statement :  princ_ideal: (a)r ring_divs: in r crng: CRng rng_car: |r| all: x:A. B[x] iff: ⇐⇒ Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] princ_ideal: (a)r member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng ring_divs: in r iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] rev_implies:  Q exists: x:A. B[x] guard: {T} comm: Comm(T;op)
Lemmas referenced :  rng_car_wf crng_wf exists_wf equal_wf rng_times_wf crng_properties and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_pairFormation lambdaEquality because_Cache applyEquality productElimination dependent_pairFormation hyp_replacement equalitySymmetry dependent_set_memberEquality equalityTransitivity setEquality

Latex:
\mforall{}r:CRng.  \mforall{}u,v:|r|.    (v  |  u  in  r  \mLeftarrow{}{}\mRightarrow{}  (v)r  u)



Date html generated: 2016_10_21-AM-11_26_01
Last ObjectModification: 2016_07_12-PM-01_09_08

Theory : rings_1


Home Index