Nuprl Lemma : princ_ideal_mem_cond
∀r:CRng. ∀u,v:|r|.  (v | u in r 
⇐⇒ (v)r u)
Proof
Definitions occuring in Statement : 
princ_ideal: (a)r
, 
ring_divs: a | b in r
, 
crng: CRng
, 
rng_car: |r|
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
princ_ideal: (a)r
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
ring_divs: a | b in r
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
comm: Comm(T;op)
Lemmas referenced : 
rng_car_wf, 
crng_wf, 
exists_wf, 
equal_wf, 
rng_times_wf, 
crng_properties, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
lambdaEquality, 
because_Cache, 
applyEquality, 
productElimination, 
dependent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
setEquality
Latex:
\mforall{}r:CRng.  \mforall{}u,v:|r|.    (v  |  u  in  r  \mLeftarrow{}{}\mRightarrow{}  (v)r  u)
Date html generated:
2016_10_21-AM-11_26_01
Last ObjectModification:
2016_07_12-PM-01_09_08
Theory : rings_1
Home
Index