Nuprl Lemma : subtype_rel_rng_sig
RngSig ⊆r RngSig{[i | j]}
Proof
Definitions occuring in Statement :
rng_sig: RngSig
,
subtype_rel: A ⊆r B
Definitions unfolded in proof :
rng_sig: RngSig
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
Lemmas referenced :
subtype_rel_product,
bool_wf,
unit_wf2,
subtype_rel_self
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
universeEquality,
sqequalRule,
lambdaEquality,
productEquality,
functionEquality,
hypothesisEquality,
hypothesis,
unionEquality,
independent_isectElimination,
lambdaFormation
Latex:
RngSig \msubseteq{}r RngSig\{[i | j]\}
Date html generated:
2016_05_15-PM-00_20_19
Last ObjectModification:
2015_12_27-AM-00_03_05
Theory : rings_1
Home
Index