Nuprl Lemma : subtype_rel_rng_sig

RngSig ⊆RngSig{[i j]}


Proof




Definitions occuring in Statement :  rng_sig: RngSig subtype_rel: A ⊆B
Definitions unfolded in proof :  rng_sig: RngSig uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  subtype_rel_product bool_wf unit_wf2 subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity universeEquality sqequalRule lambdaEquality productEquality functionEquality hypothesisEquality hypothesis unionEquality independent_isectElimination lambdaFormation

Latex:
RngSig  \msubseteq{}r  RngSig\{[i  |  j]\}



Date html generated: 2016_05_15-PM-00_20_19
Last ObjectModification: 2015_12_27-AM-00_03_05

Theory : rings_1


Home Index