Nuprl Lemma : algebra_hom_wf

A:RngSig. ∀M,N:algebra_sig{i:l}(|A|).  (algebra_hom(A; M; N) ∈ Type)


Proof




Definitions occuring in Statement :  algebra_hom: algebra_hom(A; M; N) algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] member: t ∈ T universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  algebra_hom: algebra_hom(A; M; N) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] module_hom: module_hom(A; M; N) and: P ∧ Q prop:
Lemmas referenced :  module_hom_wf and_wf fun_thru_2op_wf alg_car_wf rng_car_wf alg_times_wf equal_wf alg_one_wf algebra_sig_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename applyEquality

Latex:
\mforall{}A:RngSig.  \mforall{}M,N:algebra\_sig\{i:l\}(|A|).    (algebra\_hom(A;  M;  N)  \mmember{}  Type)



Date html generated: 2016_05_16-AM-07_28_06
Last ObjectModification: 2015_12_28-PM-05_07_31

Theory : algebras_1


Home Index