Nuprl Lemma : algebra_subtype_algebra_sig

A:RngSig. (algebra{i:l}(A) ⊆algebra_sig{i:l}(|A|))


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) algebra_sig: algebra_sig{i:l}(A) subtype_rel: A ⊆B all: x:A. B[x] rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T algebra: algebra{i:l}(A) module: A-Module
Lemmas referenced :  algebra_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lambdaEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality cut lemma_by_obid dependent_functionElimination hypothesis

Latex:
\mforall{}A:RngSig.  (algebra\{i:l\}(A)  \msubseteq{}r  algebra\_sig\{i:l\}(|A|))



Date html generated: 2016_05_16-AM-07_27_23
Last ObjectModification: 2015_12_28-PM-05_07_30

Theory : algebras_1


Home Index