Nuprl Lemma : calgebra_wf

A:RngSig. (CAlg(A) ∈ 𝕌')


Proof




Definitions occuring in Statement :  calgebra: CAlg(A) all: x:A. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  calgebra: CAlg(A) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] algebra: algebra{i:l}(A) module: A-Module prop:
Lemmas referenced :  algebra_wf comm_wf alg_car_wf rng_car_wf alg_times_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis cumulativity isectElimination setElimination rename

Latex:
\mforall{}A:RngSig.  (CAlg(A)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-07_27_42
Last ObjectModification: 2015_12_28-PM-05_07_28

Theory : algebras_1


Home Index