Nuprl Lemma : calgebra_wf
∀A:RngSig. (CAlg(A) ∈ 𝕌')
Proof
Definitions occuring in Statement :
calgebra: CAlg(A)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
,
rng_sig: RngSig
Definitions unfolded in proof :
calgebra: CAlg(A)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
algebra: algebra{i:l}(A)
,
module: A-Module
,
prop: ℙ
Lemmas referenced :
algebra_wf,
comm_wf,
alg_car_wf,
rng_car_wf,
alg_times_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
setEquality,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
cumulativity,
isectElimination,
setElimination,
rename
Latex:
\mforall{}A:RngSig. (CAlg(A) \mmember{} \mBbbU{}')
Date html generated:
2016_05_16-AM-07_27_42
Last ObjectModification:
2015_12_28-PM-05_07_28
Theory : algebras_1
Home
Index