Nuprl Lemma : module_hom_properties

A:RngSig. ∀M,N:algebra_sig{i:l}(|A|). ∀f:module_hom(A; M; N).  module_hom_p(A; M; N; f)


Proof




Definitions occuring in Statement :  module_hom: module_hom(A; M; N) module_hom_p: module_hom_p(a; m; n; f) algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] module_hom: module_hom(A; M; N) member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf rng_car_wf algebra_sig_wf module_hom_wf sq_stable__module_hom_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination isectElimination

Latex:
\mforall{}A:RngSig.  \mforall{}M,N:algebra\_sig\{i:l\}(|A|).  \mforall{}f:module\_hom(A;  M;  N).    module\_hom\_p(A;  M;  N;  f)



Date html generated: 2016_05_16-AM-07_27_15
Last ObjectModification: 2016_01_16-PM-09_59_57

Theory : algebras_1


Home Index