Nuprl Lemma : sq_stable__module_hom_p

A:RngSig. ∀M,N:algebra_sig{i:l}(|A|). ∀f:M.car ⟶ N.car.  SqStable(module_hom_p(A; M; N; f))


Proof




Definitions occuring in Statement :  module_hom_p: module_hom_p(a; m; n; f) alg_car: a.car algebra_sig: algebra_sig{i:l}(A) sq_stable: SqStable(P) all: x:A. B[x] function: x:A ⟶ B[x] rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  module_hom_p: module_hom_p(a; m; n; f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop: implies:  Q sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__and uall_wf alg_car_wf rng_car_wf equal_wf alg_plus_wf all_wf alg_act_wf infix_ap_wf sq_stable__uall sq_stable__equal squash_wf sq_stable__all algebra_sig_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis lambdaEquality applyEquality isect_memberEquality because_Cache independent_functionElimination isect_memberFormation introduction axiomEquality functionEquality

Latex:
\mforall{}A:RngSig.  \mforall{}M,N:algebra\_sig\{i:l\}(|A|).  \mforall{}f:M.car  {}\mrightarrow{}  N.car.    SqStable(module\_hom\_p(A;  M;  N;  f))



Date html generated: 2016_05_16-AM-07_27_07
Last ObjectModification: 2015_12_28-PM-05_08_02

Theory : algebras_1


Home Index