Nuprl Lemma : sq_stable__module_hom_p
∀A:RngSig. ∀M,N:algebra_sig{i:l}(|A|). ∀f:M.car ⟶ N.car.  SqStable(module_hom_p(A; M; N; f))
Proof
Definitions occuring in Statement : 
module_hom_p: module_hom_p(a; m; n; f)
, 
alg_car: a.car
, 
algebra_sig: algebra_sig{i:l}(A)
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
module_hom_p: module_hom_p(a; m; n; f)
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
Lemmas referenced : 
sq_stable__and, 
uall_wf, 
alg_car_wf, 
rng_car_wf, 
equal_wf, 
alg_plus_wf, 
all_wf, 
alg_act_wf, 
infix_ap_wf, 
sq_stable__uall, 
sq_stable__equal, 
squash_wf, 
sq_stable__all, 
algebra_sig_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberFormation, 
introduction, 
axiomEquality, 
functionEquality
Latex:
\mforall{}A:RngSig.  \mforall{}M,N:algebra\_sig\{i:l\}(|A|).  \mforall{}f:M.car  {}\mrightarrow{}  N.car.    SqStable(module\_hom\_p(A;  M;  N;  f))
Date html generated:
2016_05_16-AM-07_27_07
Last ObjectModification:
2015_12_28-PM-05_08_02
Theory : algebras_1
Home
Index