Nuprl Lemma : mprime_ty_wf
∀g:GrpSig. (Prime(g) ∈ Type)
Proof
Definitions occuring in Statement : 
mprime_ty: Prime(g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
mprime_ty: Prime(g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
mprime_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination
Latex:
\mforall{}g:GrpSig.  (Prime(g)  \mmember{}  Type)
Date html generated:
2016_05_16-AM-07_43_54
Last ObjectModification:
2015_12_28-PM-05_54_01
Theory : factor_1
Home
Index