Nuprl Lemma : mprime_wf
∀g:GrpSig. ∀a:|g|.  (IsPrime(a) ∈ ℙ)
Proof
Definitions occuring in Statement : 
mprime: IsPrime(a)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
grp_car: |g|
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
mprime: IsPrime(a)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
not_wf, 
munit_wf, 
all_wf, 
grp_car_wf, 
mdivides_wf, 
grp_op_wf, 
or_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
applyEquality
Latex:
\mforall{}g:GrpSig.  \mforall{}a:|g|.    (IsPrime(a)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-07_43_52
Last ObjectModification:
2015_12_28-PM-05_54_17
Theory : factor_1
Home
Index