Nuprl Lemma : uni_sat_upto_wf
∀T:Type. ∀r:T ⟶ T ⟶ ℙ. ∀a:T. ∀Q:T ⟶ ℙ.  (a r !x:T. Q[x]  ∈ ℙ)
Proof
Definitions occuring in Statement : 
uni_sat_upto: uni_sat_upto, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uni_sat_upto: uni_sat_upto, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
all_wf, 
binrel_ap_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
cumulativity, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}a:T.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.    (a  r  !x:T.  Q[x]    \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-07_45_07
Last ObjectModification:
2015_12_28-PM-05_54_05
Theory : factor_1
Home
Index