Nuprl Lemma : uni_sat_upto_wf

T:Type. ∀r:T ⟶ T ⟶ ℙ. ∀a:T. ∀Q:T ⟶ ℙ.  (a !x:T. Q[x]  ∈ ℙ)


Proof




Definitions occuring in Statement :  uni_sat_upto: uni_sat_upto prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uni_sat_upto: uni_sat_upto all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q prop:
Lemmas referenced :  and_wf all_wf binrel_ap_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality lambdaEquality functionEquality hypothesis cumulativity universeEquality

Latex:
\mforall{}T:Type.  \mforall{}r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}a:T.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.    (a  r  !x:T.  Q[x]    \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_45_07
Last ObjectModification: 2015_12_28-PM-05_54_05

Theory : factor_1


Home Index