Nuprl Lemma : uni_sat_upto_wf
∀T:Type. ∀r:T ⟶ T ⟶ ℙ. ∀a:T. ∀Q:T ⟶ ℙ. (a r !x:T. Q[x] ∈ ℙ)
Proof
Definitions occuring in Statement :
uni_sat_upto: uni_sat_upto,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uni_sat_upto: uni_sat_upto,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
and_wf,
all_wf,
binrel_ap_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
lambdaEquality,
functionEquality,
hypothesis,
cumulativity,
universeEquality
Latex:
\mforall{}T:Type. \mforall{}r:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}. \mforall{}a:T. \mforall{}Q:T {}\mrightarrow{} \mBbbP{}. (a r !x:T. Q[x] \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-07_45_07
Last ObjectModification:
2015_12_28-PM-05_54_05
Theory : factor_1
Home
Index