Nuprl Lemma : comb_for_mon_for_wf

λg,A,as,f,z. For{g} x ∈ as. f[x] ∈ g:IMonoid ⟶ A:Type ⟶ as:(A List) ⟶ f:(A ⟶ |g|) ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] list: List so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type imon: IMonoid grp_car: |g|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  mon_for_wf squash_wf true_wf istype-universe grp_car_wf list_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination functionIsType setElimination rename universeEquality

Latex:
\mlambda{}g,A,as,f,z.  For\{g\}  x  \mmember{}  as.  f[x]  \mmember{}  g:IMonoid  {}\mrightarrow{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  f:(A  {}\mrightarrow{}  |g|)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \000C|g|



Date html generated: 2019_10_16-PM-01_02_20
Last ObjectModification: 2018_10_08-AM-11_45_09

Theory : list_2


Home Index