Nuprl Lemma : comb_for_mon_for_wf
λg,A,as,f,z. For{g} x ∈ as. f[x] ∈ g:IMonoid ⟶ A:Type ⟶ as:(A List) ⟶ f:(A ⟶ |g|) ⟶ (↓True) ⟶ |g|
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
imon: IMonoid
Lemmas referenced : 
mon_for_wf, 
squash_wf, 
true_wf, 
istype-universe, 
grp_car_wf, 
list_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
functionIsType, 
setElimination, 
rename, 
universeEquality
Latex:
\mlambda{}g,A,as,f,z.  For\{g\}  x  \mmember{}  as.  f[x]  \mmember{}  g:IMonoid  {}\mrightarrow{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  f:(A  {}\mrightarrow{}  |g|)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \000C|g|
Date html generated:
2019_10_16-PM-01_02_20
Last ObjectModification:
2018_10_08-AM-11_45_09
Theory : list_2
Home
Index