Nuprl Lemma : distinct_cons_lemma

as,a,s:Top.  (distinct{s}([a as]) (∀br(:|s|) ∈ as. b(r (=ba))) ∧b distinct{s}(as))


Proof




Definitions occuring in Statement :  distinct: distinct{s}(ps) ball: ball cons: [a b] band: p ∧b q bnot: ¬bb top: Top infix_ap: y all: x:A. B[x] sqequal: t set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] distinct: distinct{s}(ps) so_lambda: λ2y.t[x; y] member: t ∈ T top: Top so_apply: x[s1;s2] band_mon: <𝔹,∧b> grp_op: * pi2: snd(t) pi1: fst(t) infix_ap: y
Lemmas referenced :  mon_htfor_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}as,a,s:Top.    (distinct\{s\}([a  /  as])  \msim{}  (\mforall{}\msubb{}r(:|s|)  \mmember{}  as.  (\mneg{}\msubb{}(r  (=\msubb{})  a)))  \mwedge{}\msubb{}  distinct\{s\}(as))



Date html generated: 2016_05_16-AM-07_37_26
Last ObjectModification: 2015_12_28-PM-05_45_18

Theory : list_2


Home Index