Nuprl Lemma : distinct_cons_lemma
∀as,a,s:Top. (distinct{s}([a / as]) ~ (∀br(:|s|) ∈ as. (¬b(r (=b) a))) ∧b distinct{s}(as))
Proof
Definitions occuring in Statement :
distinct: distinct{s}(ps)
,
ball: ball,
cons: [a / b]
,
band: p ∧b q
,
bnot: ¬bb
,
top: Top
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
,
set_eq: =b
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
distinct: distinct{s}(ps)
,
so_lambda: λ2x y.t[x; y]
,
member: t ∈ T
,
top: Top
,
so_apply: x[s1;s2]
,
band_mon: <𝔹,∧b>
,
grp_op: *
,
pi2: snd(t)
,
pi1: fst(t)
,
infix_ap: x f y
Lemmas referenced :
mon_htfor_cons_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis
Latex:
\mforall{}as,a,s:Top. (distinct\{s\}([a / as]) \msim{} (\mforall{}\msubb{}r(:|s|) \mmember{} as. (\mneg{}\msubb{}(r (=\msubb{}) a))) \mwedge{}\msubb{} distinct\{s\}(as))
Date html generated:
2016_05_16-AM-07_37_26
Last ObjectModification:
2015_12_28-PM-05_45_18
Theory : list_2
Home
Index