Nuprl Lemma : comb_for_mset_for_wf

λs,g,f,a,z. (msFor{g} x ∈ a. f[x]) ∈ s:DSet ⟶ g:IAbMonoid ⟶ f:(|s| ⟶ |g|) ⟶ a:MSet{s} ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet iabmonoid: IAbMonoid imon: IMonoid
Lemmas referenced :  mset_for_wf squash_wf true_wf mset_wf set_car_wf grp_car_wf iabmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination functionEquality setElimination rename

Latex:
\mlambda{}s,g,f,a,z.  (msFor\{g\}  x  \mmember{}  a.  f[x])  \mmember{}  s:DSet  {}\mrightarrow{}  g:IAbMonoid  {}\mrightarrow{}  f:(|s|  {}\mrightarrow{}  |g|)  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)\000C  {}\mrightarrow{}  |g|



Date html generated: 2016_05_16-AM-07_47_31
Last ObjectModification: 2015_12_28-PM-06_02_52

Theory : mset


Home Index