Nuprl Lemma : comb_for_mset_for_wf
λs,g,f,a,z. (msFor{g} x ∈ a. f[x]) ∈ s:DSet ⟶ g:IAbMonoid ⟶ f:(|s| ⟶ |g|) ⟶ a:MSet{s} ⟶ (↓True) ⟶ |g|
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset: MSet{s}
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
Lemmas referenced : 
mset_for_wf, 
squash_wf, 
true_wf, 
mset_wf, 
set_car_wf, 
grp_car_wf, 
iabmonoid_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
functionEquality, 
setElimination, 
rename
Latex:
\mlambda{}s,g,f,a,z.  (msFor\{g\}  x  \mmember{}  a.  f[x])  \mmember{}  s:DSet  {}\mrightarrow{}  g:IAbMonoid  {}\mrightarrow{}  f:(|s|  {}\mrightarrow{}  |g|)  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)\000C  {}\mrightarrow{}  |g|
Date html generated:
2016_05_16-AM-07_47_31
Last ObjectModification:
2015_12_28-PM-06_02_52
Theory : mset
Home
Index