Step
*
1
1
1
of Lemma
count_bsubmset
1. s : DSet@i'
2. a : Base
3. a1 : Base
4. a = a1 ∈ pertype(λas,bs. ((as ∈ |s| List) ∧ (bs ∈ |s| List) ∧ (as ≡(|s|) bs)))
5. a ∈ |s| List
6. a1 ∈ |s| List
7. a ≡(|s|) a1
8. b : Base
9. b1 : Base
10. b = b1 ∈ pertype(λas,bs. ((as ∈ |s| List) ∧ (bs ∈ |s| List) ∧ (as ≡(|s|) bs)))
11. b ∈ |s| List
12. b1 ∈ |s| List
13. b ≡(|s|) b1
⊢ ↑bsublist(s;a;b)
⇐⇒ ∀x:|s|. ((x #∈ a) ≤ (x #∈ b))
BY
{ ((Simple (BLemma `count_bsublist_a`)) THEN Auto) }
Latex:
Latex:
1. s : DSet@i'
2. a : Base
3. a1 : Base
4. a = a1
5. a \mmember{} |s| List
6. a1 \mmember{} |s| List
7. a \mequiv{}(|s|) a1
8. b : Base
9. b1 : Base
10. b = b1
11. b \mmember{} |s| List
12. b1 \mmember{} |s| List
13. b \mequiv{}(|s|) b1
\mvdash{} \muparrow{}bsublist(s;a;b) \mLeftarrow{}{}\mRightarrow{} \mforall{}x:|s|. ((x \#\mmember{} a) \mleq{} (x \#\mmember{} b))
By
Latex:
((Simple (BLemma `count\_bsublist\_a`)) THEN Auto)
Home
Index