Nuprl Lemma : free_abmon_inj_wf
∀S:DSet. ∀f:FAbMon(S).  (f.inj ∈ |S| ⟶ |f.mon|)
Proof
Definitions occuring in Statement : 
free_abmon_inj: f.inj
, 
free_abmon_mon: f.mon
, 
free_abmonoid: FAbMon(S)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
free_abmonoid: FAbMon(S)
, 
free_abmon_inj: f.inj
, 
free_abmon_mon: f.mon
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
free_abmonoid_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination
Latex:
\mforall{}S:DSet.  \mforall{}f:FAbMon(S).    (f.inj  \mmember{}  |S|  {}\mrightarrow{}  |f.mon|)
Date html generated:
2016_05_16-AM-07_48_25
Last ObjectModification:
2015_12_28-PM-06_02_31
Theory : mset
Home
Index