Nuprl Lemma : free_abmon_inj_wf

S:DSet. ∀f:FAbMon(S).  (f.inj ∈ |S| ⟶ |f.mon|)


Proof




Definitions occuring in Statement :  free_abmon_inj: f.inj free_abmon_mon: f.mon free_abmonoid: FAbMon(S) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T free_abmonoid: FAbMon(S) free_abmon_inj: f.inj free_abmon_mon: f.mon pi1: fst(t) pi2: snd(t)
Lemmas referenced :  free_abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}S:DSet.  \mforall{}f:FAbMon(S).    (f.inj  \mmember{}  |S|  {}\mrightarrow{}  |f.mon|)



Date html generated: 2016_05_16-AM-07_48_25
Last ObjectModification: 2015_12_28-PM-06_02_31

Theory : mset


Home Index