Nuprl Lemma : free_abmonoid_wf

S:DSet. (FAbMon(S) ∈ 𝕌')


Proof




Definitions occuring in Statement :  free_abmonoid: FAbMon(S) all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  free_abmonoid: FAbMon(S) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B abmonoid: AbMon mon: Mon so_lambda: λ2x.t[x] monoid_hom: MonHom(M1,M2) so_apply: x[s]
Lemmas referenced :  abmonoid_wf set_car_wf grp_car_wf unique_set_wf monoid_hom_wf equal_wf compose_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productEquality lemma_by_obid hypothesis functionEquality sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality lambdaEquality cumulativity universeEquality because_Cache

Latex:
\mforall{}S:DSet.  (FAbMon(S)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-07_48_17
Last ObjectModification: 2015_12_28-PM-06_02_50

Theory : mset


Home Index