Nuprl Lemma : free_abmonoid_wf
∀S:DSet. (FAbMon(S) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
free_abmonoid: FAbMon(S)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
dset: DSet
Definitions unfolded in proof : 
free_abmonoid: FAbMon(S)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
abmonoid: AbMon
, 
mon: Mon
, 
so_lambda: λ2x.t[x]
, 
monoid_hom: MonHom(M1,M2)
, 
so_apply: x[s]
Lemmas referenced : 
abmonoid_wf, 
set_car_wf, 
grp_car_wf, 
unique_set_wf, 
monoid_hom_wf, 
equal_wf, 
compose_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
productEquality, 
lemma_by_obid, 
hypothesis, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
because_Cache
Latex:
\mforall{}S:DSet.  (FAbMon(S)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_16-AM-07_48_17
Last ObjectModification:
2015_12_28-PM-06_02_50
Theory : mset
Home
Index