Nuprl Lemma : unique_set_wf

[T:Type]. ∀[P:T ⟶ ℙ].  ({!x:T P[x]} ∈ Type)


Proof




Definitions occuring in Statement :  unique_set: {!x:T P[x]} uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unique_set: {!x:T P[x]} and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule setEquality hypothesisEquality productEquality applyEquality hypothesis thin lambdaEquality sqequalHypSubstitution universeEquality extract_by_obid isectElimination functionEquality axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  isect_memberEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (\{!x:T  |  P[x]\}  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_18_07
Last ObjectModification: 2018_09_26-AM-10_25_14

Theory : core_2


Home Index