Nuprl Lemma : fset_map_wf

s,s':DSet. ∀f:|s| ⟶ |s'|. ∀a:MSet{s}.  (fs-map(f, a) ∈ FiniteSet{s'})


Proof




Definitions occuring in Statement :  fset_map: fs-map(f, a) finite_set: FiniteSet{s} mset: MSet{s} all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  fset_map: fs-map(f, a) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet
Lemmas referenced :  fset_of_mset_wf2 mset_map_wf mset_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis functionEquality isectElimination setElimination rename

Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}a:MSet\{s\}.    (fs-map(f,  a)  \mmember{}  FiniteSet\{s'\})



Date html generated: 2016_05_16-AM-07_50_29
Last ObjectModification: 2015_12_28-PM-06_00_46

Theory : mset


Home Index