Nuprl Lemma : fset_of_mset_wf2

s:DSet. ∀a:MSet{s}.  (fset_of_mset(s;a) ∈ FiniteSet{s})


Proof




Definitions occuring in Statement :  fset_of_mset: fset_of_mset(s;a) finite_set: FiniteSet{s} mset: MSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T finite_set: FiniteSet{s} uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop:
Lemmas referenced :  fset_of_mset_wf fset_of_mset_count_bound set_car_wf all_wf le_wf mset_count_wf nat_wf mset_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename sqequalRule lambdaEquality applyEquality natural_numberEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (fset\_of\_mset(s;a)  \mmember{}  FiniteSet\{s\})



Date html generated: 2016_05_16-AM-07_50_19
Last ObjectModification: 2015_12_28-PM-06_00_49

Theory : mset


Home Index