Nuprl Lemma : fset_of_mset_count_bound

s:DSet. ∀a:MSet{s}. ∀c:|s|.  ((c #∈ fset_of_mset(s;a)) ≤ 1)


Proof




Definitions occuring in Statement :  fset_of_mset: fset_of_mset(s;a) mset_count: #∈ a mset: MSet{s} le: A ≤ B all: x:A. B[x] natural_number: $n dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q prop: guard: {T} dset: DSet nat: fset_of_mset: fset_of_mset(s;a) top: Top mset_union_mon: <MSet{s},⋃,0> grp_id: e pi2: snd(t) pi1: fst(t) null_mset: 0{s} mset_count: #∈ a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A squash: T grp_car: |g| mset: MSet{s} quotient: x,y:A//B[x; y] true: True uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q mset_inj: mset_inj{s}(x) mk_mset: mk_mset(as) infix_ap: y decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] grp_op: * uiff: uiff(P;Q) cand: c∧ B
Lemmas referenced :  mset_ind_a le_wf mset_count_wf fset_of_mset_wf mset_wf set_car_wf dset_wf sq_stable__le mset_for_null_lemma istype-void count_nil_lemma istype-false squash_wf true_wf istype-int mset_for_mset_inj mset_union_mon_wf abmonoid_subtype_iabmonoid mset_inj_wf subtype_rel_self nat_wf iff_weakening_equal count_cons_lemma b2i_bounds set_eq_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf mset_for_mset_sum mset_count_union imax_lb
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality_alt isectElimination because_Cache hypothesis applyEquality natural_numberEquality universeIsType independent_functionElimination inhabitedIsType setElimination rename equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination independent_pairFormation imageElimination imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.  \mforall{}c:|s|.    ((c  \#\mmember{}  fset\_of\_mset(s;a))  \mleq{}  1)



Date html generated: 2019_10_16-PM-01_06_45
Last ObjectModification: 2018_10_08-PM-05_41_01

Theory : mset


Home Index