Nuprl Lemma : fset_of_mset_wf

s:DSet. ∀a:MSet{s}.  (fset_of_mset(s;a) ∈ MSet{s})


Proof




Definitions occuring in Statement :  fset_of_mset: fset_of_mset(s;a) mset: MSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  fset_of_mset: fset_of_mset(s;a) all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] mset_union_mon: <MSet{s},⋃,0> grp_car: |g| pi1: fst(t) uall: [x:A]. B[x] dset: DSet so_apply: x[s] abmonoid: AbMon mon: Mon
Lemmas referenced :  mset_for_wf mset_union_mon_wf abmonoid_subtype_iabmonoid mset_inj_wf mset_wf set_car_wf grp_car_wf abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality isectElimination setElimination rename

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (fset\_of\_mset(s;a)  \mmember{}  MSet\{s\})



Date html generated: 2016_05_16-AM-07_50_12
Last ObjectModification: 2015_12_28-PM-06_01_03

Theory : mset


Home Index