Nuprl Lemma : mset_union_mon_wf

s:DSet. (<MSet{s},⋃,0> ∈ AbMon)


Proof




Definitions occuring in Statement :  mset_union_mon: <MSet{s},⋃,0> all: x:A. B[x] member: t ∈ T abmonoid: AbMon dset: DSet
Definitions unfolded in proof :  mset_union_mon: <MSet{s},⋃,0> all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a assoc: Assoc(T;op) infix_ap: y ident: Ident(T;op;id) and: P ∧ Q comm: Comm(T;op)
Lemmas referenced :  mk_abmonoid mset_wf eq_mset_wf btrue_wf mset_union_wf null_mset_wf dset_wf mset_union_assoc mset_union_ident_r mset_union_ident_l mset_union_comm
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis lambdaEquality independent_isectElimination isect_memberFormation introduction isect_memberEquality axiomEquality because_Cache independent_pairFormation productElimination independent_pairEquality

Latex:
\mforall{}s:DSet.  (<MSet\{s\},\mcup{},0>  \mmember{}  AbMon)



Date html generated: 2016_05_16-AM-07_49_30
Last ObjectModification: 2015_12_28-PM-06_01_27

Theory : mset


Home Index