Nuprl Lemma : mset_union_ident_l
∀s:DSet. ∀a:MSet{s}.  ((0{s} ⋃ a) = a ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_union: a ⋃ b
, 
null_mset: 0{s}
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
true: True
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
null_mset: 0{s}
, 
mset_count: x #∈ a
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
Lemmas referenced : 
eq_mset_iff_eq_counts, 
mset_union_wf, 
null_mset_wf, 
all_wf, 
squash_wf, 
true_wf, 
set_car_wf, 
equal_wf, 
mset_count_union, 
mset_count_wf, 
nat_wf, 
iff_weakening_equal, 
mset_wf, 
dset_wf, 
count_nil_lemma, 
imax_unfold, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
le_wf, 
eqtt_to_assert, 
assert_of_le_int, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
decidable__equal_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    ((0\{s\}  \mcup{}  a)  =  a)
Date html generated:
2017_10_01-AM-09_59_56
Last ObjectModification:
2017_03_03-PM-01_00_56
Theory : mset
Home
Index