Nuprl Lemma : eq_mset_iff_eq_counts
∀s:DSet. ∀a,b:MSet{s}.  (a = b ∈ MSet{s} 
⇐⇒ ∀x:|s|. ((x #∈ a) = (x #∈ b) ∈ ℤ))
Proof
Definitions occuring in Statement : 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
mset: MSet{s}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
mk_mset: mk_mset(as)
, 
mset_count: x #∈ a
Lemmas referenced : 
sq_stable__iff, 
equal_wf, 
mset_wf, 
all_wf, 
set_car_wf, 
mset_count_wf, 
nat_wf, 
sq_stable__equal, 
sq_stable__all, 
squash_wf, 
iff_wf, 
list_wf, 
subtype_quotient, 
permr_wf, 
permr_equiv_rel, 
equal-wf-base, 
dset_wf, 
equal_mset_elim, 
mk_mset_wf, 
permr_iff_eq_counts
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
intEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
productEquality, 
addLevel, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((x  \#\mmember{}  a)  =  (x  \#\mmember{}  b)))
Date html generated:
2017_10_01-AM-09_59_48
Last ObjectModification:
2017_03_03-PM-01_01_11
Theory : mset
Home
Index