Nuprl Lemma : eq_mset_iff_eq_counts

s:DSet. ∀a,b:MSet{s}.  (a b ∈ MSet{s} ⇐⇒ ∀x:|s|. ((x #∈ a) (x #∈ b) ∈ ℤ))


Proof




Definitions occuring in Statement :  mset_count: #∈ a mset: MSet{s} all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] implies:  Q sq_stable: SqStable(P) mset: MSet{s} iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q prop: quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a squash: T mk_mset: mk_mset(as) mset_count: #∈ a
Lemmas referenced :  sq_stable__iff equal_wf mset_wf all_wf set_car_wf mset_count_wf nat_wf sq_stable__equal sq_stable__all squash_wf iff_wf list_wf subtype_quotient permr_wf permr_equiv_rel equal-wf-base dset_wf equal_mset_elim mk_mset_wf permr_iff_eq_counts
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis setElimination rename sqequalRule lambdaEquality intEquality applyEquality because_Cache independent_functionElimination pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry independent_isectElimination imageMemberEquality baseClosed productEquality addLevel independent_pairFormation impliesFunctionality

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((x  \#\mmember{}  a)  =  (x  \#\mmember{}  b)))



Date html generated: 2017_10_01-AM-09_59_48
Last ObjectModification: 2017_03_03-PM-01_01_11

Theory : mset


Home Index