Nuprl Lemma : equal_mset_elim

s:DSet. ∀as,bs:|s| List.  (mk_mset(as) mk_mset(bs) ∈ MSet{s} ⇐⇒ as ≡(|s|) bs)


Proof




Definitions occuring in Statement :  mk_mset: mk_mset(as) mset: MSet{s} permr: as ≡(T) bs list: List all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: mk_mset: mk_mset(as) eq_mset: eq_mset{s}(a,b) subtype_rel: A ⊆B mset: MSet{s} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  list_wf set_car_wf dset_wf assert_of_bpermr permr_wf iff_wf equal_wf mset_wf mk_mset_wf assert_wf bpermr_wf assert_of_eq_mset subtype_quotient permr_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addLevel productElimination independent_pairFormation impliesFunctionality dependent_functionElimination independent_functionElimination applyEquality sqequalRule lambdaEquality independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (mk\_mset(as)  =  mk\_mset(bs)  \mLeftarrow{}{}\mRightarrow{}  as  \mequiv{}(|s|)  bs)



Date html generated: 2016_05_16-AM-07_47_01
Last ObjectModification: 2015_12_28-PM-06_03_52

Theory : mset


Home Index