Nuprl Lemma : assert_of_eq_mset
∀s:DSet. ∀a,b:MSet{s}.  (↑eq_mset{s}(a,b) 
⇐⇒ a = b ∈ MSet{s})
Proof
Definitions occuring in Statement : 
eq_mset: eq_mset{s}(a,b)
, 
mset: MSet{s}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
mset: MSet{s}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
dset: DSet
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
eq_mset: eq_mset{s}(a,b)
Lemmas referenced : 
member_wf, 
and_wf, 
assert_of_bpermr, 
quotient-member-eq, 
bpermr_wf, 
equal-wf-base, 
permr_equiv_rel, 
list_wf, 
set_car_wf, 
permr_wf, 
subtype_quotient, 
iff_wf, 
squash_wf, 
sq_stable__equal, 
decidable__assert, 
sq_stable_from_decidable, 
equal_wf, 
eq_mset_wf, 
assert_wf, 
sq_stable__iff, 
dset_wf, 
mset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
introduction, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
productEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (\muparrow{}eq\_mset\{s\}(a,b)  \mLeftarrow{}{}\mRightarrow{}  a  =  b)
Date html generated:
2016_05_16-AM-07_46_58
Last ObjectModification:
2016_01_16-PM-11_40_19
Theory : mset
Home
Index