Nuprl Lemma : mset_union_assoc
∀s:DSet. ∀a,b,c:MSet{s}.  ((a ⋃ (b ⋃ c)) = ((a ⋃ b) ⋃ c) ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_union: a ⋃ b
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
imax_assoc, 
dset_wf, 
mset_wf, 
iff_weakening_equal, 
nat_wf, 
mset_count_wf, 
imax_wf, 
mset_count_union, 
equal_wf, 
set_car_wf, 
true_wf, 
squash_wf, 
all_wf, 
mset_union_wf, 
eq_mset_iff_eq_counts
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b,c:MSet\{s\}.    ((a  \mcup{}  (b  \mcup{}  c))  =  ((a  \mcup{}  b)  \mcup{}  c))
Date html generated:
2016_05_16-AM-07_49_16
Last ObjectModification:
2016_01_16-PM-11_39_43
Theory : mset
Home
Index