Nuprl Lemma : mset_for_mset_sum
∀s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀a,b:MSet{s}.
  ((msFor{g} x ∈ a + b. f[x]) = ((msFor{g} x ∈ a. f[x]) * (msFor{g} x ∈ b. f[x])) ∈ |g|)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_sum: a + b
, 
mset: MSet{s}
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
mset: MSet{s}
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
mset_for: mset_for, 
mset_sum: a + b
, 
prop: ℙ
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mset_wf, 
set_car_wf, 
grp_car_wf, 
iabmonoid_wf, 
dset_wf, 
list_wf, 
permr_wf, 
equal_wf, 
equal-wf-base, 
squash_wf, 
true_wf, 
mon_for_functionality_wrt_permr, 
append_wf, 
append_functionality_wrt_permr, 
mem_f_wf, 
infix_ap_wf, 
grp_op_wf, 
mon_for_wf, 
iff_weakening_equal, 
mon_for_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
isectElimination, 
setElimination, 
rename, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
productEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}a,b:MSet\{s\}.
    ((msFor\{g\}  x  \mmember{}  a  +  b.  f[x])  =  ((msFor\{g\}  x  \mmember{}  a.  f[x])  *  (msFor\{g\}  x  \mmember{}  b.  f[x])))
Date html generated:
2017_10_01-AM-09_59_19
Last ObjectModification:
2017_03_03-PM-01_00_12
Theory : mset
Home
Index