Nuprl Lemma : mon_for_append

g:IMonoid. ∀A:Type. ∀f:A ⟶ |g|. ∀as,as':A List.
  ((For{g} x ∈ as as'. f[x]) ((For{g} x ∈ as. f[x]) (For{g} x ∈ as'. f[x])) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] append: as bs list: List infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T imon: IMonoid grp_op: * grp_car: |g|
Definitions unfolded in proof :  mon_for: For{g} x ∈ as. f[x] all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: imon: IMonoid so_apply: x[s] infix_ap: y implies:  Q append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] and: P ∧ Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction list_wf equal_wf grp_car_wf for_wf grp_op_wf grp_id_wf append_wf list_ind_nil_lemma for_nil_lemma mon_ident list_ind_cons_lemma for_cons_lemma istype-universe imon_wf squash_wf true_wf subtype_rel_self iff_weakening_equal mon_assoc
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality_alt functionEquality hypothesis setElimination rename because_Cache applyEquality universeIsType independent_functionElimination dependent_functionElimination Error :memTop,  equalitySymmetry productElimination functionIsType equalityIstype inhabitedIsType instantiate universeEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}g:IMonoid.  \mforall{}A:Type.  \mforall{}f:A  {}\mrightarrow{}  |g|.  \mforall{}as,as':A  List.
    ((For\{g\}  x  \mmember{}  as  @  as'.  f[x])  =  ((For\{g\}  x  \mmember{}  as.  f[x])  *  (For\{g\}  x  \mmember{}  as'.  f[x])))



Date html generated: 2020_05_20-AM-09_35_31
Last ObjectModification: 2020_01_08-PM-06_00_20

Theory : list_2


Home Index