Nuprl Lemma : mon_for_append
∀g:IMonoid. ∀A:Type. ∀f:A ⟶ |g|. ∀as,as':A List.
  ((For{g} x ∈ as @ as'. f[x]) = ((For{g} x ∈ as. f[x]) * (For{g} x ∈ as'. f[x])) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
append: as @ bs
, 
list: T List
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
imon: IMonoid
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
mon_for: For{g} x ∈ as. f[x]
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
imon: IMonoid
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
list_wf, 
equal_wf, 
grp_car_wf, 
for_wf, 
grp_op_wf, 
grp_id_wf, 
append_wf, 
list_ind_nil_lemma, 
for_nil_lemma, 
mon_ident, 
list_ind_cons_lemma, 
for_cons_lemma, 
istype-universe, 
imon_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mon_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
functionEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
Error :memTop, 
equalitySymmetry, 
productElimination, 
functionIsType, 
equalityIstype, 
inhabitedIsType, 
instantiate, 
universeEquality, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}g:IMonoid.  \mforall{}A:Type.  \mforall{}f:A  {}\mrightarrow{}  |g|.  \mforall{}as,as':A  List.
    ((For\{g\}  x  \mmember{}  as  @  as'.  f[x])  =  ((For\{g\}  x  \mmember{}  as.  f[x])  *  (For\{g\}  x  \mmember{}  as'.  f[x])))
Date html generated:
2020_05_20-AM-09_35_31
Last ObjectModification:
2020_01_08-PM-06_00_20
Theory : list_2
Home
Index