Nuprl Lemma : for_wf
∀[A,B,C:Type]. ∀[f:B ⟶ C ⟶ C]. ∀[k:C]. ∀[as:A List]. ∀[g:A ⟶ B].  (For{A,f,k} x ∈ as. g[x] ∈ C)
Proof
Definitions occuring in Statement : 
for: For{T,op,id} x ∈ as. f[x]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
for: For{T,op,id} x ∈ as. f[x]
, 
tlambda: λx:T. b[x]
, 
so_apply: x[s]
Lemmas referenced : 
reduce_wf, 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
functionEquality, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[k:C].  \mforall{}[as:A  List].  \mforall{}[g:A  {}\mrightarrow{}  B].    (For\{A,f,k\}  x  \mmember{}  as.  g[x]  \mmember{}  C)
Date html generated:
2019_06_20-PM-00_39_11
Last ObjectModification:
2018_09_26-PM-02_05_45
Theory : list_0
Home
Index