Nuprl Lemma : ftype_wf
∀s:DSet. ∀a:MSet{s}.  (FTy{s}(a) ∈ Type)
Proof
Definitions occuring in Statement : 
ftype: FTy{s}(a)
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
dset: DSet
Definitions unfolded in proof : 
ftype: FTy{s}(a)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
prop: ℙ
Lemmas referenced : 
set_car_wf, 
assert_wf, 
mset_mem_wf, 
mset_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination
Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (FTy\{s\}(a)  \mmember{}  Type)
Date html generated:
2016_05_16-AM-07_47_20
Last ObjectModification:
2015_12_28-PM-06_03_17
Theory : mset
Home
Index