Nuprl Lemma : ftype_wf

s:DSet. ∀a:MSet{s}.  (FTy{s}(a) ∈ Type)


Proof




Definitions occuring in Statement :  ftype: FTy{s}(a) mset: MSet{s} all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  ftype: FTy{s}(a) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet prop:
Lemmas referenced :  set_car_wf assert_wf mset_mem_wf mset_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (FTy\{s\}(a)  \mmember{}  Type)



Date html generated: 2016_05_16-AM-07_47_20
Last ObjectModification: 2015_12_28-PM-06_03_17

Theory : mset


Home Index