Nuprl Lemma : comb_for_app_permf_wf
λm,n,p,q,z. app_permf(m;n;p;q) ∈ m:ℕ ⟶ n:ℕ ⟶ p:(ℕm ⟶ ℕm) ⟶ q:(ℕn ⟶ ℕn) ⟶ (↓True) ⟶ ℕm + n ⟶ ℕm + n
Proof
Definitions occuring in Statement : 
app_permf: app_permf(m;n;p;q)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
app_permf_wf, 
squash_wf, 
true_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
functionIsType, 
natural_numberEquality, 
setElimination, 
rename, 
inhabitedIsType
Latex:
\mlambda{}m,n,p,q,z.  app\_permf(m;n;p;q)  \mmember{}  m:\mBbbN{}  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  p:(\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}m)  {}\mrightarrow{}  q:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}m  +  n  {}\mrightarrow{}  \000C\mBbbN{}m  +  n
Date html generated:
2019_10_16-PM-00_59_39
Last ObjectModification:
2018_10_08-AM-09_20_31
Theory : perms_1
Home
Index