Nuprl Lemma : comb_for_comp_perm_wf

λT,p,q,z. q ∈ T:Type ⟶ p:Perm(T) ⟶ q:Perm(T) ⟶ (↓True) ⟶ Perm(T)


Proof




Definitions occuring in Statement :  comp_perm: comp_perm perm: Perm(T) squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  comp_perm_wf squash_wf true_wf perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination inhabitedIsType universeEquality

Latex:
\mlambda{}T,p,q,z.  p  O  q  \mmember{}  T:Type  {}\mrightarrow{}  p:Perm(T)  {}\mrightarrow{}  q:Perm(T)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  Perm(T)



Date html generated: 2019_10_16-PM-00_58_53
Last ObjectModification: 2018_10_08-AM-09_46_31

Theory : perms_1


Home Index