Nuprl Lemma : comb_for_comp_perm_wf
λT,p,q,z. p O q ∈ T:Type ⟶ p:Perm(T) ⟶ q:Perm(T) ⟶ (↓True) ⟶ Perm(T)
Proof
Definitions occuring in Statement :
comp_perm: comp_perm,
perm: Perm(T)
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
comp_perm_wf,
squash_wf,
true_wf,
perm_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality_alt,
sqequalHypSubstitution,
imageElimination,
cut,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeIsType,
isectElimination,
inhabitedIsType,
universeEquality
Latex:
\mlambda{}T,p,q,z. p O q \mmember{} T:Type {}\mrightarrow{} p:Perm(T) {}\mrightarrow{} q:Perm(T) {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} Perm(T)
Date html generated:
2019_10_16-PM-00_58_53
Last ObjectModification:
2018_10_08-AM-09_46_31
Theory : perms_1
Home
Index