Nuprl Lemma : comb_for_perm_igrp_wf

λT,z. perm_igrp(T) ∈ T:Type ⟶ (↓True) ⟶ IGroup


Proof




Definitions occuring in Statement :  perm_igrp: perm_igrp(T) squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type igrp: IGroup
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  perm_igrp_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality

Latex:
\mlambda{}T,z.  perm\_igrp(T)  \mmember{}  T:Type  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  IGroup



Date html generated: 2019_10_16-PM-00_59_07
Last ObjectModification: 2018_10_08-AM-09_46_30

Theory : perms_1


Home Index