Nuprl Lemma : comb_for_txpose_perm_wf

λn,i,j,z. txpose_perm(i;j) ∈ n:ℕ ⟶ i:ℕn ⟶ j:ℕn ⟶ (↓True) ⟶ Sym(n)


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) int_seg: {i..j-} nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: nat:
Lemmas referenced :  txpose_perm_wf squash_wf true_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination inhabitedIsType natural_numberEquality setElimination rename

Latex:
\mlambda{}n,i,j,z.  txpose\_perm(i;j)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  i:\mBbbN{}n  {}\mrightarrow{}  j:\mBbbN{}n  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  Sym(n)



Date html generated: 2019_10_16-PM-00_59_21
Last ObjectModification: 2018_10_08-AM-09_26_38

Theory : perms_1


Home Index