Nuprl Lemma : alg_from_rng_wf
∀A:Type. ∀r:RngSig. ∀act:A ⟶ |r| ⟶ |r|.  (alg_from_rng(A;r;act) ∈ algebra_sig{i:l}(A))
Proof
Definitions occuring in Statement : 
alg_from_rng: alg_from_rng(A;r;act)
, 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
alg_from_rng: alg_from_rng(A;r;act)
, 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_car_wf, 
rng_eq_wf, 
rng_le_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
rng_div_wf, 
unit_wf2, 
bool_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
cumulativity, 
productEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}r:RngSig.  \mforall{}act:A  {}\mrightarrow{}  |r|  {}\mrightarrow{}  |r|.    (alg\_from\_rng(A;r;act)  \mmember{}  algebra\_sig\{i:l\}(A))
Date html generated:
2016_05_16-AM-08_14_44
Last ObjectModification:
2015_12_28-PM-06_09_15
Theory : polynom_1
Home
Index