Nuprl Lemma : comb_for_oal_bpos_wf
λs,g,ps,z. pos(ps) ∈ s:LOSet ⟶ g:AbDMon ⟶ ps:|oal(s;g)| ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement : 
oal_bpos: pos(ps)
, 
oalist: oal(a;b)
, 
bool: 𝔹
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
abdmonoid: AbDMon
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
dset: DSet
Lemmas referenced : 
oal_bpos_wf, 
squash_wf, 
true_wf, 
set_car_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
sqequalRule
Latex:
\mlambda{}s,g,ps,z.  pos(ps)  \mmember{}  s:LOSet  {}\mrightarrow{}  g:AbDMon  {}\mrightarrow{}  ps:|oal(s;g)|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2016_05_16-AM-08_20_27
Last ObjectModification:
2015_12_28-PM-06_25_17
Theory : polynom_2
Home
Index