Nuprl Lemma : oal_bpos_wf

s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  (pos(ps) ∈ 𝔹)


Proof




Definitions occuring in Statement :  oal_bpos: pos(ps) oalist: oal(a;b) bool: 𝔹 all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T oal_bpos: pos(ps) uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet band: p ∧b q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q prop: ifthenelse: if then else fi  bfalse: ff false: False abdmonoid: AbDMon dmon: DMon mon: Mon
Lemmas referenced :  set_car_wf oalist_wf dset_wf abdmonoid_wf loset_wf bnot_wf oal_null_wf bool_wf iff_transitivity equal-wf-T-base assert_wf not_wf equal_wf oal_nil_wf iff_weakening_uiff eqtt_to_assert assert_of_bnot assert_of_oal_null eqff_to_assert grp_blt_wf grp_id_wf oal_lv_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination because_Cache independent_pairFormation impliesFunctionality productElimination voidElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    (pos(ps)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-10_03_58
Last ObjectModification: 2017_03_03-PM-01_07_10

Theory : polynom_2


Home Index