Nuprl Lemma : oal_bpos_wf
∀s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  (pos(ps) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
oal_bpos: pos(ps)
, 
oalist: oal(a;b)
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
oal_bpos: pos(ps)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
band: p ∧b q
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf, 
bnot_wf, 
oal_null_wf, 
bool_wf, 
iff_transitivity, 
equal-wf-T-base, 
assert_wf, 
not_wf, 
equal_wf, 
oal_nil_wf, 
iff_weakening_uiff, 
eqtt_to_assert, 
assert_of_bnot, 
assert_of_oal_null, 
eqff_to_assert, 
grp_blt_wf, 
grp_id_wf, 
oal_lv_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
independent_pairFormation, 
impliesFunctionality, 
productElimination, 
voidElimination
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    (pos(ps)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-10_03_58
Last ObjectModification:
2017_03_03-PM-01_07_10
Theory : polynom_2
Home
Index