Nuprl Lemma : assert_of_oal_null
∀s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  (↑null(ps) ⇐⇒ ps = 00 ∈ |oal(s;g)|)
Proof
Definitions occuring in Statement : 
oal_null: null(ps), 
oal_nil: 00, 
oalist: oal(a;b), 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
dset_of_mon: g↓set, 
set_prod: s × t, 
dset_list: s List, 
pi1: fst(t), 
set_car: |p|, 
mk_dset: mk_dset(T, eq), 
dset_set: dset_set, 
oalist: oal(a;b), 
dset: DSet, 
subtype_rel: A ⊆r B, 
abdmonoid: AbDMon, 
qoset: QOSet, 
poset: POSet{i}, 
loset: LOSet, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
oal_null: null(ps), 
all: ∀x:A. B[x], 
pi2: snd(t), 
mon: Mon, 
dmon: DMon, 
cand: A c∧ B, 
oal_nil: 00
Lemmas referenced : 
oalist_car_properties, 
sd_ordered_wf, 
map_wf, 
grp_car_wf, 
not_wf, 
mem_wf, 
grp_id_wf, 
dset_of_mon_wf0, 
assert_of_null, 
set_car_wf, 
set_prod_wf, 
dset_of_mon_wf, 
dset_wf, 
oalist_wf, 
assert_wf, 
null_wf, 
iff_wf, 
equal-wf-T-base, 
list_wf, 
equal_wf, 
oal_nil_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
isectElimination, 
lemma_by_obid, 
impliesFunctionality, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
addLevel, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productEquality, 
dependent_set_memberEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    (\muparrow{}null(ps)  \mLeftarrow{}{}\mRightarrow{}  ps  =  00)
Date html generated:
2016_05_16-AM-08_19_34
Last ObjectModification:
2016_01_16-PM-11_56_45
Theory : polynom_2
Home
Index