Nuprl Lemma : assert_of_oal_null

s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  (↑null(ps) ⇐⇒ ps 00 ∈ |oal(s;g)|)


Proof




Definitions occuring in Statement :  oal_null: null(ps) oal_nil: 00 oalist: oal(a;b) assert: b all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  implies:  Q rev_implies:  Q prop: uimplies: supposing a uiff: uiff(P;Q) dset_of_mon: g↓set set_prod: s × t dset_list: List pi1: fst(t) set_car: |p| mk_dset: mk_dset(T, eq) dset_set: dset_set oalist: oal(a;b) dset: DSet subtype_rel: A ⊆B abdmonoid: AbDMon qoset: QOSet poset: POSet{i} loset: LOSet member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q iff: ⇐⇒ Q oal_null: null(ps) all: x:A. B[x] pi2: snd(t) mon: Mon dmon: DMon cand: c∧ B oal_nil: 00
Lemmas referenced :  oalist_car_properties sd_ordered_wf map_wf grp_car_wf not_wf mem_wf grp_id_wf dset_of_mon_wf0 assert_of_null set_car_wf set_prod_wf dset_of_mon_wf dset_wf oalist_wf assert_wf null_wf iff_wf equal-wf-T-base list_wf equal_wf oal_nil_wf abdmonoid_wf loset_wf
Rules used in proof :  baseClosed equalitySymmetry equalityTransitivity because_Cache independent_isectElimination dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesis hypothesisEquality rename setElimination isectElimination lemma_by_obid impliesFunctionality independent_pairFormation thin productElimination sqequalHypSubstitution addLevel cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality dependent_set_memberEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    (\muparrow{}null(ps)  \mLeftarrow{}{}\mRightarrow{}  ps  =  00)



Date html generated: 2016_05_16-AM-08_19_34
Last ObjectModification: 2016_01_16-PM-11_56_45

Theory : polynom_2


Home Index