Nuprl Lemma : oalist_car_properties
∀a:LOSet. ∀b:AbDMon. ∀ws:|oal(a;b)|.  ((↑sd_ordered(map(λx.(fst(x));ws))) ∧ (¬↑(e ∈b map(λx.(snd(x));ws))))
Proof
Definitions occuring in Statement : 
oalist: oal(a;b), 
sd_ordered: sd_ordered(as), 
mem: a ∈b as, 
map: map(f;as), 
assert: ↑b, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
lambda: λx.A[x], 
dset_of_mon: g↓set, 
abdmonoid: AbDMon, 
grp_id: e, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
pi2: snd(t), 
mon: Mon, 
dmon: DMon, 
prop: ℙ, 
false: False, 
not: ¬A, 
squash: ↓T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
dset_of_mon: g↓set, 
dset_list: s List, 
set_prod: s × t, 
dset: DSet, 
subtype_rel: A ⊆r B, 
abdmonoid: AbDMon, 
qoset: QOSet, 
poset: POSet{i}, 
loset: LOSet, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
set_car: |p|, 
mk_dset: mk_dset(T, eq), 
dset_set: dset_set, 
oalist: oal(a;b), 
cand: A c∧ B, 
and: P ∧ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable_from_decidable, 
assert_wf, 
sd_ordered_wf, 
map_wf, 
set_car_wf, 
set_prod_wf, 
dset_of_mon_wf, 
decidable__assert, 
mem_wf, 
grp_id_wf, 
dset_of_mon_wf0, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
voidElimination, 
independent_pairFormation, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
lambdaEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
isectElimination, 
lemma_by_obid, 
rename, 
thin, 
setElimination, 
sqequalRule, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ws:|oal(a;b)|.
    ((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ws)))  \mwedge{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ws))))
Date html generated:
2016_05_16-AM-08_15_31
Last ObjectModification:
2016_01_16-PM-11_58_31
Theory : polynom_2
Home
Index