Nuprl Lemma : comb_for_oal_inj_wf
λa,b,k,v,z. inj(k,v) ∈ a:LOSet ⟶ b:AbDMon ⟶ k:|a| ⟶ v:|b| ⟶ (↓True) ⟶ |oal(a;b)|
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v)
, 
oalist: oal(a;b)
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
Lemmas referenced : 
oal_inj_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
set_car_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}a,b,k,v,z.  inj(k,v)  \mmember{}  a:LOSet  {}\mrightarrow{}  b:AbDMon  {}\mrightarrow{}  k:|a|  {}\mrightarrow{}  v:|b|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |oal(a;b)|
Date html generated:
2016_05_16-AM-08_18_43
Last ObjectModification:
2015_12_28-PM-06_26_32
Theory : polynom_2
Home
Index