Step
*
1
2
1
of Lemma
oal_umap_char
1. s : LOSet
2. g : AbDMon
3. h : AbMon
4. f : |s| ⟶ MonHom(g,h)
5. ∀k:|s|. ((∀[a1,a2:|g|]. ((f k (a1 * a2)) = ((f k a1) * (f k a2)) ∈ |h|)) ∧ ((f k e) = e ∈ |h|))
⊢ (λps:|oal(s;g)|. msFor{h} k ∈ dom(ps)
(f k (ps[k]))) = !v:|oal(s;g)| ⟶ |h|
(IsMonHom{oal_mon(s;g),h}(v)
∧ (∀j:|s|. ((f j) = (v o (λw.inj(j,w))) ∈ (|g| ⟶ |h|))))
BY
{ ((Unfold `uni_sat` 0 THEN GenRepD) THENA Auto) }
1
1. s : LOSet
2. g : AbDMon
3. h : AbMon
4. f : |s| ⟶ MonHom(g,h)
5. ∀k:|s|. ((∀[a1,a2:|g|]. ((f k (a1 * a2)) = ((f k a1) * (f k a2)) ∈ |h|)) ∧ ((f k e) = e ∈ |h|))
⊢ IsMonHom{oal_mon(s;g),h}(λps:|oal(s;g)|. msFor{h} k ∈ dom(ps)
(f k (ps[k])))
2
1. s : LOSet
2. g : AbDMon
3. h : AbMon
4. f : |s| ⟶ MonHom(g,h)
5. ∀k:|s|. ((∀[a1,a2:|g|]. ((f k (a1 * a2)) = ((f k a1) * (f k a2)) ∈ |h|)) ∧ ((f k e) = e ∈ |h|))
6. j : |s|
⊢ (f j) = ((λps:|oal(s;g)|. msFor{h} k ∈ dom(ps). (f k (ps[k]))) o (λw.inj(j,w))) ∈ (|g| ⟶ |h|)
3
1. s : LOSet
2. g : AbDMon
3. h : AbMon
4. f : |s| ⟶ MonHom(g,h)
5. ∀k:|s|. ((∀[a1,a2:|g|]. ((f k (a1 * a2)) = ((f k a1) * (f k a2)) ∈ |h|)) ∧ ((f k e) = e ∈ |h|))
6. a' : |oal(s;g)| ⟶ |h|
7. IsMonHom{oal_mon(s;g),h}(a')
8. ∀j:|s|. ((f j) = (a' o (λw.inj(j,w))) ∈ (|g| ⟶ |h|))
⊢ a' = (λps:|oal(s;g)|. msFor{h} k ∈ dom(ps). (f k (ps[k]))) ∈ (|oal(s;g)| ⟶ |h|)
Latex:
Latex:
1. s : LOSet
2. g : AbDMon
3. h : AbMon
4. f : |s| {}\mrightarrow{} MonHom(g,h)
5. \mforall{}k:|s|. ((\mforall{}[a1,a2:|g|]. ((f k (a1 * a2)) = ((f k a1) * (f k a2)))) \mwedge{} ((f k e) = e))
\mvdash{} (\mlambda{}ps:|oal(s;g)|. msFor\{h\} k \mmember{} dom(ps)
(f k (ps[k]))) = !v:|oal(s;g)| {}\mrightarrow{} |h|
(IsMonHom\{oal\_mon(s;g),h\}(v)
\mwedge{} (\mforall{}j:|s|. ((f j) = (v o (\mlambda{}w.inj(j,w))))))
By
Latex:
((Unfold `uni\_sat` 0 THEN GenRepD) THENA Auto)
Home
Index